
Using Rulesets to Build and Manage Data
Todd A. King, Steven P. Joy, Joseph N. Mafi, Erin K. Means, Raymond J. Walker

Institute of Geophysics and Planetary Physics, UCLA, 3846 Slichter Hall, Los Angeles, CA 90095-1567 United States

Ruleset

Engine

Metadata

Template

Ruleset

Output

Plug-in
Included
Ruleset

http://www.igpp.ucla.edu/pds

For More Information and Downloads

CassiniFFHScan
Extract information from a Cassini Flatfile.

Compare
Perform a relational compare two strings or
numbers.

FFHScan
Extract information from a Flatfile.

FormatDescription
Word wrap and indent text.

IMath
Perform simple integer math.

LabelValue
Extract a value from a label.

Lookup
Find a value in an interval lookup spreadsheet.

SpreadSheet
Parse files containing a spreadsheet (delimited text)

and determine metrics.
PChronos

Interface to the NAIF/SPICE "chronos" utility.
Strings

Determine length, change case, index, and subset
strings.

TabStartStop
Return a portion (column) of the first and last rows in
an ASCII table.

TargetPhrase
Create a properly punctuated phrase describing a
list of values.

Time
Parse and construct time strings in many formats.

Current Plug-ins

ExampleExample

Comments
A comment is any line of text that begins with either “#”
or a “/” or text enclosed between “/*” and “*/”.

Variables
A variable is a named value. Values may be strings,
literals, or arrays.

Directives
Directives are commands to the ruleset processor
which control which rules are executed and provide an
interface to external files or applications (plug-ins) for
acquiring rulesets.

OPTION
The OPTION directive sets the value of an option for the ruleset
processor.
GLOBAL
The GLOBAL directive defines a variable that should persist
between executions of individual rulesets.
INCLUDE
The INCLUDE directive instructs the ruleset processor to open a
file and load the contents as a set of rules.
MESSAGE
The MESSAGE directive provides a means to display a message
for the user. A message may span multiple lines.
IF
The IF directive marks the beginning of a block of rules which will
be executed if the value associated with a variable matches the
specified pattern.
/IF
The /IF directive marks the end of the block of rules that was
marked with the most recent IF directive.
ELSE
The ELSE directive marks the beginning of a block of rules which
will be executed if the conditions of the preceding IF directive are
not met.
ELSEIF
The ELSEIF directive marks the beginning of a block of rules which
will be executed if the value associated with a variable matches the
specified pattern.
ABORT
The ABORT directive ends the processing of the rules and reports
that all processing should end.
IGNORE
The IGNORE directive ends the processing of the rules and reports
that no output should be generated.
TEMPLATE
The TEMPLATE directive defines the file which will be used
generating output.
COPY
The COPY directive instructs the ruleset processor to copy a file
from one location to another.
OUTPUT
The OUTPUT directive defines the name of the file the output will
be written.
RUN
The RUN directive will execute a command, passing any number of
arguments, and process the output from the command as a set of
rules.

Ruleset Language

• Written in Java

• Organized as a set of classes:
PDSLabel: Parsing PDS Labels.
PPIOption: Option handling support.
PPIRuleset: PPI Ruleset Language processing.
PPITable: Reading and writing to tables.
PPITime: Maniuplate time strings.

• Custom packages containing rulesets, plug-in and
applications are created using a java based self
installer.

Implementation Details

galmag.rulgalmag.rul

<INCLUDE constant.rul>

<TEMPLATE template.lbl>

<OUTPUT $BASE_NAME.lbl>

<IF $FILE_EXT != “TAB”>

<IGNORE>

<ELSE>

<RUN TabStartStop $FILE_PATH/$FILE_BASE>

<IF ! $START_TIME>

<MESSAGE “FFHScan failed for $PATH_NAME”>

<ABORT>

</IF>

�

�

�

</IF>

<INCLUDE constant.rul>

<TEMPLATE template.lbl>

<OUTPUT $BASE_NAME.lbl>

<IF $FILE_EXT != “TAB”>

<IGNORE>

<ELSE>

<RUN TabStartStop $FILE_PATH/$FILE_BASE>

<IF ! $START_TIME>

<MESSAGE “FFHScan failed for $PATH_NAME”>

<ABORT>

</IF>

�

�

�

</IF>

constant.rulconstant.rul

$PDS_VERSION = PDS3

$DSID = GO-J-MAG-3-RDR-I24-IOCORDS-V1.0

$STD_PROD_ID = "MAG LPW IPHIO COORDS"

$PROD_TYPE = DATA

$REC_TYPE = FIXED

$RECL = 120

$RECS = 512

$HOST_NAME = "GALILEO ORBITER"

$HOST_ID = GO

$ORBIT = 24

$TARGET_LIST = JUPITER

$INST_NAME = "FLUXGATE MAGNETOMETER"

$INST_ID = MAG

$STD_PROD_DESCR = “Galileo Magnetometer data

from the I24 fly-by in IO Phi-Omega

coordinates. The data cover the time period

between $START_TIME and $STOP_TIME."

$INTERCHANGE = ASCII

$RECS = 10

$COLS = 4

$RECL = 64

$FMT = MAG_DATA.FMT

$PDS_VERSION = PDS3

$DSID = GO-J-MAG-3-RDR-I24-IOCORDS-V1.0

$STD_PROD_ID = "MAG LPW IPHIO COORDS"

$PROD_TYPE = DATA

$REC_TYPE = FIXED

$RECL = 120

$RECS = 512

$HOST_NAME = "GALILEO ORBITER"

$HOST_ID = GO

$ORBIT = 24

$TARGET_LIST = JUPITER

$INST_NAME = "FLUXGATE MAGNETOMETER"

$INST_ID = MAG

$STD_PROD_DESCR = “Galileo Magnetometer data

from the I24 fly-by in IO Phi-Omega

coordinates. The data cover the time period

between $START_TIME and $STOP_TIME."

$INTERCHANGE = ASCII

$RECS = 10

$COLS = 4

$RECL = 64

$FMT = MAG_DATA.FMT

template.lbltemplate.lbl

PDS_VERSION_ID = $PDS_VERSION

DATA_SET_ID = "$DSID"

STANDARD_DATA_PRODUCT_ID = "$STD_PROD_ID"

PRODUCT_ID = "$FILE_BASE"

PRODUCT_TYPE = "$PROD_TYPE"

PRODUCT_CREATION_TIME = $FILE_TIME

RECORD_TYPE = $REC_TYPE

RECORD_BYTES = $RECL

FILE_RECORDS = $RECS

START_TIME = $START_TIME

STOP_TIME = $STOP_TIME

SPACECRAFT_CLOCK_START_COUNT = "$START_SCLK"

SPACECRAFT_CLOCK_STOP_COUNT = "$STOP_SCLK"

INSTRUMENT_HOST_NAME = "$HOST_NAME"

INSTRUMENT_HOST_ID = "$HOST_ID"

ORBIT_NUMBER = $ORBIT

TARGET_NAME = $TARGET_LIST

INSTRUMENT_NAME = "$INST_NAME"

INSTRUMENT_ID = "$INST_ID"

DESCRIPTION = "

$STD_PROD_DESCR"

^TABLE = "$FILE_BASE.FFD"

OBJECT = TABLE

INTERCHANGE_FORMAT = "$INTERCHANGE"

ROWS = $RECS

COLUMNS = $COLS

ROW_BYTES = $RECL

^STRUCTURE = "$FMT"

END_OBJECT = TABLE

END

PDS_VERSION_ID = $PDS_VERSION

DATA_SET_ID = "$DSID"

STANDARD_DATA_PRODUCT_ID = "$STD_PROD_ID"

PRODUCT_ID = "$FILE_BASE"

PRODUCT_TYPE = "$PROD_TYPE"

PRODUCT_CREATION_TIME = $FILE_TIME

RECORD_TYPE = $REC_TYPE

RECORD_BYTES = $RECL

FILE_RECORDS = $RECS

START_TIME = $START_TIME

STOP_TIME = $STOP_TIME

SPACECRAFT_CLOCK_START_COUNT = "$START_SCLK"

SPACECRAFT_CLOCK_STOP_COUNT = "$STOP_SCLK"

INSTRUMENT_HOST_NAME = "$HOST_NAME"

INSTRUMENT_HOST_ID = "$HOST_ID"

ORBIT_NUMBER = $ORBIT

TARGET_NAME = $TARGET_LIST

INSTRUMENT_NAME = "$INST_NAME"

INSTRUMENT_ID = "$INST_ID"

DESCRIPTION = "

$STD_PROD_DESCR"

^TABLE = "$FILE_BASE.FFD"

OBJECT = TABLE

INTERCHANGE_FORMAT = "$INTERCHANGE"

ROWS = $RECS

COLUMNS = $COLS

ROW_BYTES = $RECL

^STRUCTURE = "$FMT"

END_OBJECT = TABLE

END

Output from TabStartStopOutput from TabStartStop

$START_TIME = 1999-10-11T03:30:00

$STOP_TIME = 1999-10-11T04:30:00

$START_TIME = 1999-10-11T03:30:00

$STOP_TIME = 1999-10-11T04:30:00

output.lbloutput.lbl

PDS_VERSION_ID = PDS3

DATA_SET_ID = "GO-J-MAG-3-RDR-I24-IOCORDS-V1.0"

STANDARD_DATA_PRODUCT_ID = "MAG LPW IPHIO COORDS"

PRODUCT_ID = "OUTPUT"

PRODUCT_TYPE = "DATA"

PRODUCT_CREATION_TIME = 2003-11-17T10:30:00.000

RECORD_TYPE = FIXED

RECORD_BYTES = 120

FILE_RECORDS = 512

START_TIME = 1999-10-11T03:30:00

STOP_TIME = 1999-10-11T04:30:00

SPACECRAFT_CLOCK_START_COUNT = "1/052902400:0"

SPACECRAFT_CLOCK_STOP_COUNT = "1/052097xxxx:00"

INSTRUMENT_HOST_NAME = "GALILEO ORBITER"

INSTRUMENT_HOST_ID = "GO"

ORBIT_NUMBER = 24

TARGET_NAME = JUPITER

INSTRUMENT_NAME = "FLUXGATE MAGNETOMETER"

INSTRUMENT_ID = "MAG"

DESCRIPTION = "

Galileo Magnetometer data from the I24 fly-by in IO Phi-Omega

coordinates. The data cover the time period between 1999-10-

11T03:30:00 and 1999-10-11T04:30:00."

^TABLE = "EXAMPLE.TAB"

OBJECT = TABLE

INTERCHANGE_FORMAT = "ASCII"

ROWS = 10

COLUMNS = 4

ROW_BYTES = 64

^STRUCTURE = "MAG_DATA.FMT"

END_OBJECT = TABLE

END

PDS_VERSION_ID = PDS3

DATA_SET_ID = "GO-J-MAG-3-RDR-I24-IOCORDS-V1.0"

STANDARD_DATA_PRODUCT_ID = "MAG LPW IPHIO COORDS"

PRODUCT_ID = "OUTPUT"

PRODUCT_TYPE = "DATA"

PRODUCT_CREATION_TIME = 2003-11-17T10:30:00.000

RECORD_TYPE = FIXED

RECORD_BYTES = 120

FILE_RECORDS = 512

START_TIME = 1999-10-11T03:30:00

STOP_TIME = 1999-10-11T04:30:00

SPACECRAFT_CLOCK_START_COUNT = "1/052902400:0"

SPACECRAFT_CLOCK_STOP_COUNT = "1/052097xxxx:00"

INSTRUMENT_HOST_NAME = "GALILEO ORBITER"

INSTRUMENT_HOST_ID = "GO"

ORBIT_NUMBER = 24

TARGET_NAME = JUPITER

INSTRUMENT_NAME = "FLUXGATE MAGNETOMETER"

INSTRUMENT_ID = "MAG"

DESCRIPTION = "

Galileo Magnetometer data from the I24 fly-by in IO Phi-Omega

coordinates. The data cover the time period between 1999-10-

11T03:30:00 and 1999-10-11T04:30:00."

^TABLE = "EXAMPLE.TAB"

OBJECT = TABLE

INTERCHANGE_FORMAT = "ASCII"

ROWS = 10

COLUMNS = 4

ROW_BYTES = 64

^STRUCTURE = "MAG_DATA.FMT"

END_OBJECT = TABLE

END

FILE_PATH
The path portion of the file specification.

FILE_NAME
The name of the file currently being processed. This includes
the file extension, but does not include any path information.

PATH_NAME
The combined path and filename.

FILE_EXT
The portion of the file name that follows the last period (.). The
extension of the file name.

FILE_BASE
The portion of the file name that excludes the file extension.

FILE_SIZE
The size in bytes of the file.

FILE_DATE
The date portion of the file creation time stamp. It is in PDS
style (yyyy-MM-dd)

FILE_TIME
The complete time stamp of the file in PDS style (yyyy-MM-
ddThh:mm:ss)

Ruleset System Variables

• Generating PDS labels for new data.

• Converting old PDS labels to new standards.

• Building data distributions.

Actual and Potential Applications

• Extend ruleset processing to text files (relax
requirement that template be in PDS label format)

• Add geometry engine plug-in (translate between
ephemeris values)

• Adapt ruleset processing for the generation of
distribution values (extend COPY directive to work on
directory trees).

Going Further

• Data engineers used different programming
languages and approaches to design and process
archival data.

• Sharing and re-use of software was difficult or non-
existent.

• Portability between platforms was limited.

• Logic (rules) were obscured by code.

Why Rulesets

• A ruleset is a collection of one or more rules.

• A rule is a statement of action (i.e, assign a value to a
variable, include another ruleset, run an external
application, write output, display a message).

• Flow through a ruleset may be conditional. (Support
for IF/ELSEIF/ELSE)

What is a Ruleset

• A ruleset is applied to a specific file.

• Metadata about the file (name, extension, size, time
stamp, location) can be used to control ruleset
execution.

• Rulesets can call (include) other rulesets and external
applications (plug-ins) based on metadata.

• Output is generated by replacing variable tokens in a
template with the current value of a variable.

How Rulesets Work

• Allows a modular design. (Large processing tasks
can be divided into smaller, more tailored rulesets)

• Sharing and re-use is common (plug-ins leverage
specialized applications more effectively)

• Data engineers can develop rulesets that can readily
be used by data providers.

• Rulesets capture (business) logic.

• Stream-lined “language” tailored for data preparation
and metadata collection.

Power of Ruleset

• Plug-ins can be written in any programming or script
language.

• A plug-in must accept command line arguments.

• Input into the plug-in is specified in the RUN directive.

• Output from the plug-in is written to standard out.

• Output must be in the ruleset language.

• The output is processed in the same manner as an
INCLUDE (run in separate engine with current
variable transferred).

How Plug-ins Work

labelerlabeler

import pds.ruleset.*;

import java.io.*;

import java.util.*;

/* Loads a rule set and processes one or more files. */

class labeler {

/** Preserves global variables between executions of the ruleset. */

public static ArrayList mGlobalList = new ArrayList();

/* Create an instance. */

public labeler() {

}

/* Entry point for the application. */

public static void main(String[] args) {

// Check arguments

if(args.length < 2) {

System.out.println("Usage: labeler ruleset pathname [pathname ...]");

return;

}

// Process arguments

for(int i = 1; i < args.length; i++) {

if(!processItem(args[0], args[i])) break;

}

}

static boolean processItem(String ruleset, String pathName) {

File item = new File(pathName);

if(item.isDirectory()) {

File[] list = item.listFiles();

for(int i = 0; i < list.length; i++) {

if(list[i].isDirectory()) {

processItem(ruleset, list[i].getPath());

} else {

if(!runRuleset(ruleset, list[i].getPath())) return false;

}

}

return true;

}

return runRuleset(ruleset, pathName);

}

import pds.ruleset.*;

import java.io.*;

import java.util.*;

/* Loads a rule set and processes one or more files. */

class labeler {

/** Preserves global variables between executions of the ruleset. */

public static ArrayList mGlobalList = new ArrayList();

/* Create an instance. */

public labeler() {

}

/* Entry point for the application. */

public static void main(String[] args) {

// Check arguments

if(args.length < 2) {

System.out.println("Usage: labeler ruleset pathname [pathname ...]");

return;

}

// Process arguments

for(int i = 1; i < args.length; i++) {

if(!processItem(args[0], args[i])) break;

}

}

static boolean processItem(String ruleset, String pathName) {

File item = new File(pathName);

if(item.isDirectory()) {

File[] list = item.listFiles();

for(int i = 0; i < list.length; i++) {

if(list[i].isDirectory()) {

processItem(ruleset, list[i].getPath());

} else {

if(!runRuleset(ruleset, list[i].getPath())) return false;

}

}

return true;

}

return runRuleset(ruleset, pathName);

}

static boolean runRuleset(String ruleFile, String pathName) {

PPIRuleset ruleset = new PPIRuleset();

boolean good = false;

// Set global variables

for(int i = 0; i < mGlobalList.size(); i++) {

ruleset.mGlobalList.add((PPIVariable) mGlobalList.get(i));

}

if(!ruleset.parse(ruleFile)) {

ruleset.showMessage(false, "An error occurred while parsing the

ruleset.");

return false;

}

// Run the ruleset

if(!ruleset.run(pathName)) {

ruleset.showMessage(false, "One or more errors occurred while processing

file: " + pathName);

ruleset.showMessage(false, "No output file was created.");

return false;

}

if(ruleset.mWriteOutput) {

if(ruleset.update()) { // Update template

ruleset.output(); // Write the template out to PPI standards

}

}

// Save global variables

mGlobalList.clear();

for(int i = 0; i < ruleset.mGlobalList.size(); i++) {

mGlobalList.add((PPIVariable) ruleset.mGlobalList.get(i));

}

return true;

}

}

static boolean runRuleset(String ruleFile, String pathName) {

PPIRuleset ruleset = new PPIRuleset();

boolean good = false;

// Set global variables

for(int i = 0; i < mGlobalList.size(); i++) {

ruleset.mGlobalList.add((PPIVariable) mGlobalList.get(i));

}

if(!ruleset.parse(ruleFile)) {

ruleset.showMessage(false, "An error occurred while parsing the

ruleset.");

return false;

}

// Run the ruleset

if(!ruleset.run(pathName)) {

ruleset.showMessage(false, "One or more errors occurred while processing

file: " + pathName);

ruleset.showMessage(false, "No output file was created.");

return false;

}

if(ruleset.mWriteOutput) {

if(ruleset.update()) { // Update template

ruleset.output(); // Write the template out to PPI standards

}

}

// Save global variables

mGlobalList.clear();

for(int i = 0; i < ruleset.mGlobalList.size(); i++) {

mGlobalList.add((PPIVariable) ruleset.mGlobalList.get(i));

}

return true;

}

}

Actual Implementation of a Ruleset ProcessorActual Implementation of a Ruleset Processor

Using rulesets has increased our productivity. It has
allowed data teams to work more effectively and has
helped improve the coordination of parallel and
distributed activities. We have successfully used
rulesets in the preparation of Galileo fields and particles
data for archiving in PDS. Also the Cassini project is
using rulesets to prepare data at the science teams for
delivery to the PDS. Data engineers at the PPI node
work closely with the Cassini teams to design and
develop the rulesets so that data deliveries meet
system requirements. We plan to use rulesets to
migrate data already in the PDS archives to the next
generation PPI data system. We anticipate that once
the rulesets are developed we can migrate our entire
data archive on the order of days.

Summary

• To create an efficient, platform independent language
for the collection and formatting of metadata.

• To improve and enhance coordination between data
engineers and data providers.

• To formalize and capture the “business” rules used in
the generation of archive data sets.

Purpose and Goal

Generate PDS labels for all Galileo Magnetometer data sets for orbit 24. These data are
stored as ASCII tables (files have the extension of “TAB”). All common parameters are stored
in “constants.rul” and included by the master ruleset “galmag.rul”. The plug-in “TabStartStop”
is used to determine start and stop times from the data file. The template label is stored in
“template.lbl”. Output is placed in a file with the same base name as the data file with the
extension of “LBL”.

An entire directory tree of files is processed with a command like:

labeler gallmag.rul /galileo/i24

